Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zong-Xiao Li* and Xin-Li Zhang

Department of Chemistry, Baoji College of Arts and Sciences, Baoji 721007, People's Republic of China

Correspondence e-mail: mingtian8001@163.com

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(\text{C-C}) = 0.004 \text{ Å}$ R factor = 0.037 wR factor = 0.075 Data-to-parameter ratio = 15.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis[4-chloro-2-(cyclohexyliminomethyl)phenolato]zinc(II)

In the mononuclear title compound, $[Zn(C_{13}H_{15}CINO)_2]$, the Zn^{II} atom is four-coordinated by two N atoms and two O atoms from two Schiff base ligands in a slightly distorted tetrahedral geometry.

Received 4 August 2005 Accepted 8 August 2005 Online 12 August 2005

Comment

Transition metal compounds containing Schiff base ligands have been of great interest for a long time. These compounds play an important role in the development of the coordination chemistry related to catalysis and enzymatic reactions, magnetism and molecular architectures (Costamagna *et al.*, 1992; Bhatia *et al.*, 1981). As an extension of work on the structural characterization of Schiff base–zinc(II) compounds, the crystal structure of the title compound, (I), is reported here.

Compound (I) is a mononuclear Zn^{II} complex (Fig. 1). It is structurally similar to the nickel(II) and cobalt(II) complexes derived from other Schiff base ligands (Steward *et al.*,1961; Erxleben & Schumacher, 2001). The Zn^{II} ion is coordinated by two O and two N atoms from two Schiff base ligands. This ZnN_2O_2 coordination forms a distorted tetrahedral geometry, with angles subtended at the Zn^{II} atom in the range 94.72 (9)– 122.35 (9)° (Table 1). The bond lengths around the Zn atom range from 1.910 (2) to 2.019 (2) Å.

Experimental

5-Chlorosalicylaldehyde (0.1 mmol, 15.7 mg), $Zn(CH_3COO)_2 \cdot 2H_2O$ (0.1 mmol, 22.0 mg) and cyclohexanamine (0.1 mmol, 9.3 mg) were dissolved in methanol (10 ml). The mixture was stirred for 30 min at room temperature to give a clear brown solution. After allowing the resulting solution to stand in air for 11 d, brown block-shaped crystals of (I) were formed on slow evaporation of the solvent. The crystals were collected, washed with methanol and dried in a vacuum desiccator using anhydrous CaCl₂ (yield 54%). Analysis found: C 57.9, H 5.56%; calculated for $C_{26}H_{30}Cl_2N_2O_2Zn$: C 58.0, H 5.57%.

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

Mo $K\alpha$ radiation

reflections

 $\theta = 2.2 - 13.6^{\circ}$

 $\mu = 1.21~\mathrm{mm}^{-1}$

T = 296 (2) K

Block brown

 $R_{\rm int} = 0.024$

 $\theta_{\rm max} = 25.5^{\circ}$

 $h = 0 \rightarrow 17$

 $\begin{array}{l} k=0 \rightarrow 16 \\ l=-30 \rightarrow 1 \end{array}$

Cell parameters from 30

 $0.68 \times 0.50 \times 0.24~\mathrm{mm}$

3 standard reflections

 $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta\rho_{\text{max}} = 0.23 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

every 97 reflections

intensity decay: 3.4%

 $w = 1/[\sigma^2(F_0^2) + (0.0308P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

Extinction correction: SHELXL97

Extinction coefficient: 0.00191 (12)

Crystal data

 $[Zn(C_{13}H_{15}CINO)_2]$ $M_r = 538.79$ Orthorhombic, *Pbca* a = 14.848 (2) Å b = 13.567 (2) Å c = 24.993 (5) Å V = 5034.5 (13) Å³ Z = 8 $D_x = 1.422$ Mg m⁻³

Data collection

Siemens P4 diffractometer ω scans Absorption correction: ψ scan (XSCANS; Siemens, 1995) $T_{min} = 0.472$, $T_{max} = 0.747$ 5714 measured reflections 4687 independent reflections 2587 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.075$ S = 0.904687 reflections 299 parameters H-atom parameters constrained

 Table 1

 Selected geometric parameters (Å, °).

Zn-O2	1.910 (2)	Zn-N2	2.015 (2)
Zn-O1	1.922 (2)	Zn-N1	2.019 (2)
O2–Zn–O1	120.24 (9)	O2–Zn–N1	113.23 (9)
O2-Zn-N2	95.61 (9)	O1-Zn-N1	94.72 (9)
O1-Zn-N2	112.72 (9)	N2-Zn-N1	122.35 (9)

All H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C–H distances in the range 0.93–0.98 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: XSCANS (Siemens, 1995); cell refinement: XSCANS; data reduction: SHELXTL (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXL97.

The authors thank the Phytochemistry Key Laboratory of Shaanxi province for the research grant (No. 02js40).

References

- Bhatia, S. C., Bindlish, J. M., Saini, A. R. & Jain, P. C. (1981). J. Chem. Soc. Dalton Trans. pp. 1773–1779.
- Costamagna, J., Vargas, J., Latorre, R., Alvarado, A. & Mena, G. (1992). Coord. Chem. Rev. 119, 67–88.
- Erxleben, A. & Schumacher, D. (2001). Eur. J. Inorg. Chem. pp. 3039–3046. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Figure 1

The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

The crystal packing of (I), viewed along the a axis. H atoms have been omitted.

Siemens (1995). XSCANS and SHELXTL (Version 5.0). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Steward, J. M., Lingafelter, E. C. & Breazeale, J. D. (1961). Acta Cryst. 14, 888– 891.